Quantitative Proteomics of Medium-Sized Extracellular Vesicle-Enriched Plasma of Lacunar Infarction for the Discovery of Prognostic Biomarkers

Author:

Datta Arnab,Chen ChristopherORCID,Gao Yong-GuiORCID,Sze Siu Kwan

Abstract

Lacunar infarction (LACI), a subtype of acute ischemic stroke, has poor mid- to long-term prognosis due to recurrent vascular events or incident dementia which is difficult to predict using existing clinical data. Herein, we aim to discover blood-based biomarkers for LACI as a complementary prognostic tool. Convalescent plasma was collected from forty-five patients following a non-disabling LACI along with seventeen matched control subjects. The patients were followed up prospectively for up to five years to record an occurrence of adverse outcome and grouped accordingly (i.e., LACI-no adverse outcome, LACI-recurrent vascular event, and LACI-cognitive decline without any recurrence of vascular events). Medium-sized extracellular vesicles (MEVs), isolated from the pooled plasma of four groups, were analyzed by stable isotope labeling and 2D-LC-MS/MS. Out of 573 (FDR < 1%) quantified proteins, 146 showed significant changes in at least one LACI group when compared to matched healthy control. A systems analysis revealed that major elements (~85%) of the MEV proteome are different from the proteome of small-sized extracellular vesicles obtained from the same pooled plasma. The altered MEV proteins in LACI patients are mostly reduced in abundance. The majority of the shortlisted MEV proteins are not linked to commonly studied biological processes such as coagulation, fibrinolysis, or inflammation. Instead, they are linked to oxygen-glucose deprivation, endo-lysosomal trafficking, glucose transport, and iron homeostasis. The dataset is provided as a web-based data resource to facilitate meta-analysis, data integration, and targeted large-scale validation.

Funder

Singapore National Research Foundation

Canadian Institutes of Health Research

Singapore Ministry of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3