Preconcentration and Separation of Gold Nanoparticles from Environmental Waters Using Extraction Techniques Followed by Spectrometric Quantification

Author:

Hagarová IngridORCID,Nemček LuciaORCID,Šebesta MartinORCID,Zvěřina Ondřej,Kasak PeterORCID,Urík MartinORCID

Abstract

The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004–200 ng L−1 and 8–250, respectively.

Funder

Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3