Author:
Lin Lishan,Yu Yaling,Liu Kangping,Jiang Yixin,Zhou Zhenlei
Abstract
As a widely used steroid hormone medicine, glucocorticoids have the potential to cause steroid-induced osteonecrosis of the femoral head (SONFH) due to mass or long-term use. The non-coding RNA hypothesis posits that they may contribute to the destruction and dysfunction of cartilages as a possible etiology of SONFH. MiR-30b-5p was identified as a regulatory factor in cartilage degeneration caused by methylprednisolone (MPS) exposure in our study through cell transfection. The luciferase reporter assay confirmed that miR-30b-5p was downregulated and runt-related transcription factor 2 (Runx2) was mediated by miR-30b-5p. The nobly increased expression of matrix metallopeptidase 13 (MMP13) and type X collagen (Col10a1) as Runx2 downstream genes contributed to the hypertrophic differentiation of chondrocytes, and the efficiently upregulated level of matrix metallopeptidase 9 (MMP9) may trigger chondrocyte apoptosis with MPS treatments. The cell transfection experiment revealed that miR-30b-5p inhibited chondrocyte hypertrophy and suppressed MPS-induced apoptosis. As a result, our findings showed that miR-30b-5p modulated Runx2, MMP9, MMP13, and Col10a1 expression, thereby mediating chondrocyte hypertrophic differentiation and apoptosis during the SONFH process. These findings revealed the mechanistic relationship between non-coding RNA and SONFH, providing a comprehensive understanding of SONFH and other bone diseases.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis