New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination

Author:

Lech AnnaORCID,Garbacz Patrycja,Sikorski ArturORCID,Gazda MariaORCID,Wesolowski MarekORCID

Abstract

Since the formation of organic salts can improve the solubility, bioavailability, and stability of active pharmaceutical ingredients, the aim of this work was to prepare an organic salt of chlordiazepoxide with saccharin. To achieve this goal, the saccharin salt of chlordiazepoxide was obtained from a physical mixture of both components by grinding them with a small volume of solvent and by crystallizing them with complete evaporation of the solvent. The resulting salt was examined by methods such as Powder X-ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), and Raman spectroscopy. The results of the studies proved that saccharin salt of chlordiazepoxide crystallizes in the orthorhombic Pbca space group with one chlordiazepoxide cation and one saccharin anion in the asymmetric unit. In the crystal of the title compound, the chlordiazepoxide cation and the saccharin anion interact through strong N–H···O hydrogen bonds and weak C–H···O hydrogen bonds. The disappearance of the N–H band in the FT-IR spectrum of saccharin may indicate a shift of this proton towards chlordiazepoxide, while the disappearance of the aromatic bond band in the chlordiazepoxide ring in the Raman spectrum may suggest the formation of intermolecular hydrogen bonds between chlordiazepoxide molecules. The melting point of the salts differs from that of the starting compounds. Thermal decomposition of the salt begins above 200 °C and shows at least two overlapping stages of mass loss. In summary, the results of the research showed that the crystalline salt of the saccharin and chlordiazepoxide can be obtained by various methods: grinding with the addition of acetonitrile and crystallization from acetonitrile or a mixture of methanol with methylene chloride.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3