Different Acute Kidney Injury Patterns after Renal Ischemia Reperfusion Injury and Extracorporeal Membrane Oxygenation in Mice

Author:

Greite Robert,Störmer Johanna,Gueler Faikah,Khalikov Rasul,Haverich Axel,Kühn Christian,Madrahimov Nodir,Natanov RuslanORCID

Abstract

The use of extracorporeal membrane oxygenation (ECMO) is associated with acute kidney injury (AKI) in thoracic organ transplantation. However, multiple other factors contribute to AKI development after these procedures such as renal ischemia-reperfusion injury (IRI) due to hypo-perfusion of the kidney during surgery. In this study, we aimed to explore the kidney injury patterns in mouse models of ECMO and renal IRI. Kidneys of C57BL/6 mice were examined after moderate (35 min) and severe (45 min) unilateral transient renal pedicle clamping and 2 h of veno-venous ECMO. Renal injury markers, neutrophil infiltration, tubular transport function, pro-inflammatory cytokines, and renal heme oxygenase-1 (HO-1) expression were determined by immunofluorescence and qPCR. Both procedures caused AKI, but with different injury patterns. Severe neutrophil infiltration of the kidney was evident after renal IRI, but not following ECMO. Tubular transport function was severely impaired after renal IRI, but preserved in the ECMO group. Both procedures caused upregulation of pro-inflammatory cytokines in the renal tissue, but with different time kinetics. After ECMO, but not IRI, HO-1 was strongly induced in tubular cells indicating contact with hemolysis-derived proteins. After IRI, HO-1 was expressed on infiltrating myeloid cells in the tubulo-interstitial space. In conclusion, renal IRI and ECMO both caused AKI, but kidney damage after renal IRI was more pronounced including severe neutrophil infiltration and tubular transport impairment. Enhanced HO-1 expression in tubular cells after ECMO encourages limitation of hemolysis as a therapeutic approach to reduce ECMO-associated AKI.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3