Synthesis of Silver Nano Particles Using Myricetin and the In-Vitro Assessment of Anti-Colorectal Cancer Activity: In-Silico Integration

Author:

Anwer Syed TauqeerORCID,Mobashir MohammadORCID,Fantoukh Omer I.ORCID,Khan Bushra,Imtiyaz Khalid,Naqvi Irshad Hussain,Rizvi M. Moshahid Alam

Abstract

The creation of novel anticancer treatments for a variety of human illnesses, including different malignancies and dangerous microbes, also potentially depends on nanoparticles including silver. Recently, it has been successful to biologically synthesize metal nanoparticles using plant extracts. The natural flavonoid 3,3′, 4′, 5,5′, and 7 hexahydroxyflavon (myricetin) has anticancer properties. There is not much known about the regulatory effects of myricetin on the possible cell fate-determination mechanisms (such as apoptosis/proliferation) in colorectal cancer. Because the majority of investigations related to the anticancer activity of myricetin have dominantly focused on the enhancement of tumor cell uncontrolled growth (i.e., apoptosis). Thus, we have decided to explore the potential myricetin interactors and the associated biological functions by using an in-silico approach. Then, we focused on the main goal of the work which involved the synthesis of silver nanoparticles and the labeling of myricetin with it. The synthesized silver nanoparticles were examined using UV-visible spectroscopy, dynamic light scattering spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. In this study, we have investigated the effects of myricetin on colorectal cancer where numerous techniques were used to show myricetin’s effect on colon cancer cells. Transmission Electron Microscopy was employed to monitor morphological changes. Furthermore, we have combined the results of the colorectal cancer gene expression dataset with those of the myricetin interactors and pathways. Based on the results, we conclude that myricetin is able to efficiently kill human colorectal cancer cell lines. Since, it shares important biological roles and possible route components and this myricetin may be a promising herbal treatment for colorectal cancer as per an in-silico analysis of the TCGA dataset.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3