Abstract
Neonatal sepsis is a life-threatening condition with high mortality. Virulence determinants relevant in causing Gram-negative (GN) neonatal sepsis are still poorly characterized. A better understanding of virulence factors (VFs) associated with GN neonatal sepsis could offer new targets for therapeutic interventions. The aim of this review was to assess the role of GN VFs in neonatal sepsis. We primarily aimed to investigate the main VFs leading to adverse outcome and second to evaluate VFs associated with increased invasiveness/pathogenicity in neonates. MEDLINE, Embase, and Cochrane Library were systematically searched for studies reporting data on the role of virulome/VFs in bloodstream infections caused by Enterobacterales among neonates and infants aged 0–90 days. Twenty studies fulfilled the inclusion criteria. Only 4 studies reported data on the association between pathogen virulence determinants and neonatal mortality, whereas 16 studies were included in the secondary analyses. The quality of reporting was suboptimal in the great majority of the published studies. No consistent association between virulence determinants and GN strains causing neonatal sepsis was identified. Considerable heterogeneity was found in terms of VFs analysed and reported, included population and microbiological methods, with the included studies often showing conflicting data. This variability hampered the comparison of the results. In conclusions, pathogens responsible for neonatal sepsis are widely heterogenous and can use different pathways to develop invasive disease. The recent genome-wide approach needs to include multicentre studies with larger sample sizes, analyses of VF gene profiles instead of single VF genes, alongside a comprehensive collection of clinical information. A better understanding of the roles of virulence genes in neonatal GN bacteraemia may offer new vaccine targets and new markers of highly virulent strains. This information can potentially be used for screening and preventive interventions as well as for new targets for anti-virulence antibiotic-sparing therapies.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献