Sequencing and Genomic Analysis of Sorghum DNA Introgression Variant Line R21 and Recipient Rice Jin Hui 1 Revealed Repetitive Element Variation

Author:

Zhang Ting,Li Xiaodong,Zhao Zijun,Wu Renhong,Yang Zhenglin,He Guanghua

Abstract

Transferring the genome of distant species to crops is an efficient way to create new germplasms. However, the molecular mechanisms involved are unclear. In this study, a new rice restorer line R21 with heat tolerance was created by introgressing the genomic DNA of sorghum into the recipient restorer line Jin Hui 1. Assembly of rice R21 and Jin Hui 1 genomes was performed using PacBio sequencing technology. Comparative genome analysis and coverage statistics showed that the repetitive sequence atr0026 was a candidate introgression fragment of sorghum DNA. Sequence similarity analysis revealed that atr0026 was distributed at different copy numbers on the telomeric position of chromosomes 9 or 10 in R21, Jin Hui 1, and several rice varieties, indicating that the repetitive sequence from sorghum was highly conserved in rice. The repeat annotation in Gramineae indicated that ribosomal DNA loci that existed in atr0026 may be cause a rearrangement of chromosomes 9 and 10 of the R21 genome, resulting in a copy number variation at the 5′ end of it. Our study lays the foundation for further elucidation of the molecular mechanisms underlying the heat tolerance of sorghum DNA introgression variant line R21, which is of great significance for guiding crop genetic breeding.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diversity of Unusual Ribosomal Genes and Ecological Origin of Rice (Oryza spp.);Agriculture;2024-02-06

2. Molecular Genetics Enhances Plant Breeding;International Journal of Molecular Sciences;2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3