Analysis of the Influence of Both the Average Molecular Weight and the Content of Crosslinking Agent on Physicochemical Properties of PVP-Based Hydrogels Developed as Innovative Dressings

Author:

Kędzierska Magdalena,Jamroży Mateusz,Drabczyk AnnaORCID,Kudłacik-Kramarczyk Sonia,Bańkosz Magdalena,Gruca Mateusz,Potemski Piotr,Tyliszczak BożenaORCID

Abstract

Hydrogels belong to the group of polymers with a three-dimensional crosslinked structure, and their crosslinking density strongly affects their physicochemical properties. Here, we verified the impact of both the average molecular weight of crosslinking agents used during the photopolymerization of hydrogels and that of their content on selected properties of these materials. First, PVP-based hydrogels modified with Aloe vera juice and L-ascorbic acid were prepared using UV radiation. Next, their surface morphology was characterized via optical scanning electron microscopy, whereas their chemical structure was investigated by FT-IR spectroscopy. Moreover, we verified the tendency of the hydrogels to degrade in selected physiological liquids, as well as their tensile strength, percentage of elongation, and swelling capability. We found that the more crosslinking agent in the hydrogel matrix, the higher its tensile strength and the less elongation. The hydrogels showed the highest stability during incubation in SBF and 2% hemoglobin solution. A sharp decrease in the pH of distilled water observed during the incubation of the hydrogels was probably due to the release of Aloe vera juice from the hydrogel matrices. This was additionally confirmed by the decrease in the intensity of the absorption band derived from the polysaccharides included in this additive and by the decrease in the swelling ratio after 48 h. Importantly, all hydrogels demonstrated swelling properties, and it was proven that the higher content of the crosslinking agent in hydrogels, the lower their swelling ability.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3