Abstract
Regulatory T (Treg) cells play crucial roles in maintaining immune self-tolerance and immune homeostasis, and closely associated with many human diseases. Recently, Treg cells-derived extracellular vesicles (Treg-EVs) have been demonstrated as a novel cell-contact independent inhibitory mechanism of Treg cells. Treg-EVs contain many specific biological molecules, which are delivered to target cells and modulate immune responses by inhibiting T cell proliferation, inducing T cell apoptosis, and changing the cytokine expression profiles of target cells. The abnormal quantity or function of Treg-EVs is associated with several types of human diseases or conditions, such as transplant rejection, inflammatory diseases, autoimmune diseases, and cancers. Treg-EVs are promising novel potential targets for disease diagnosis, therapy, and drug transport. Moreover, Treg-EVs possess distinct advantages over Treg cell-based immunotherapies. However, the therapeutic potential of Treg-EVs is limited by some factors, such as the standardized protocol for isolation and purification, large scale production, and drug loading efficiency. In this review, we systematically describe the structure, components, functions, and basic mechanisms of action of Treg-EVs and discuss the emerging roles in pathogenesis and the potential application of Treg-EVs in human diseases.
Funder
Key Research and Development Program of Hubei Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献