Genome-Wide Identification and Characterization of the NF-YA Gene Family and Its Expression in Response to Different Nitrogen Forms in Populus × canescens

Author:

Zhou Jing,Yang Lingyu,Chen Xin,Zhou Mengyan,Shi Wenguang,Deng Shurong,Luo Zhibin

Abstract

The NF-YA gene family is a class of conserved transcription factors that play important roles in plant growth and development and the response to abiotic stress. Poplar is a model organism for studying the rapid growth of woody plants that need to consume many nutrients. However, studies on the response of the NF-YA gene family to nitrogen in woody plants are limited. In this study, we conducted a systematic and comprehensive bioinformatic analysis of the NF-YA gene family based on Populus × canescens genomic data. A total of 13 PcNF-YA genes were identified and mapped to 6 chromosomes. According to the amino acid sequence characteristics and genetic structure of the NF-YA domains, the PcNF-YAs were divided into five clades. Gene duplication analysis revealed five pairs of replicated fragments and one pair of tandem duplicates in 13 PcNF-YA genes. The PcNF-YA gene promoter region is rich in different cis-acting regulatory elements, among which MYB and MYC elements are the most abundant. Among the 13 PcNF-YA genes, 9 contained binding sites for P. × canescens miR169s. In addition, RT-qPCR data from the roots, wood, leaves and bark of P. × canescens showed different spatial expression profiles of PcNF-YA genes. Transcriptome data and RT-qPCR analysis showed that the expression of PcNF-YA genes was altered by treatment with different nitrogen forms. Furthermore, the functions of PcNF-YA genes in transgenic poplar were analyzed, and the potential roles of PcNF-YA genes in the response of poplar roots to different nitrogen forms were revealed, indicating that these genes regulate root growth and development.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds of CAF

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants;International Journal of Molecular Sciences;2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3