Development of a Transformation System and Locus Identification Pipeline for T-DNA in Chrysanthemum seticuspe, A Model Species for Hexaploid Cultivated Chrysanthemum

Author:

Zhang Jiali,Zhang Jing,Li Peiling,Gao Yuan,Yu Qi,Sun Daojin,Zhang Lingling,Wang Siqi,Tian Jing,Wang ZhenxingORCID,Jiang Jiafu,Chen Fadi,Song AipingORCID

Abstract

Chrysanthemum is one of the most popular flowers worldwide and has high aesthetic and commercial value. However, the cultivated varieties of chrysanthemum are hexaploid and highly heterozygous, which makes gene editing and gene function research difficult. Gojo-0 is a diploid homozygous line bred from a self-compatible mutant of Chrysanthemum seticuspe and is expected to become a model plant of the genus Chrysanthemum. After assessment of different growth regulator combinations, the optimal concentrations of α-naphthaleneacetic acid (NAA) and 6-benzyladenine (6-BA) in the regeneration system were 1.0 mg·L−1 and 0.2 mg·L−1, respectively. In the genetic transformation system, the selected concentrations of kanamycin, hygromycin and glufosinate-ammonium were 10 mg·L−1, 2.5 mg·L−1 and 0.6 mg·L−1 for bud generation and 12 mg L−1, 1.5 mg·L−1 and 0.5 mg·L−1 for rooting. The transgenic plants were verified by not only PCR detection and GUS staining, but also identification of the T-DNA insertion locus using high-throughput sequencing. Our results lay the foundation for gene functional research on chrysanthemum and will help with the identification of transgenic plants.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Natural Science Fund of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3