Evaluation of Free Light Chains (FLCs) Synthesis in Response to Exposure to SARS-CoV-2

Author:

Gudowska-Sawczuk MonikaORCID,Moniuszko-Malinowska AnnaORCID,Pączek Sara,Guziejko Katarzyna,Chorąży Monika,Mroczko BarbaraORCID

Abstract

The aim of this study is to assess the synthesis of kappa (κ) and lambda (λ) free light chains (FLCs) in the serum of patients with COVID-19. All the 120 serum samples were collected from patients with COVID-19 and from healthy controls (vaccinated and non-vaccinated against SARS-CoV-2). FLCs, IgG total, IgG4, IgG anti-Nucleocapsid (N), anti-spike S1 receptor binding domain (S-RBD) antibodies and IL-6 were measured according to the manufacturers’ instructions. The concentrations of anti-N IgG, IgG total, IgG4 and IL-6 were elevated in the COVID-19 group in comparison to the vaccinated and non-vaccinated controls. The levels of anti-S-RBD IgG and κFLC were increased in COVID-19 and healthy vaccinated patients when compared to non-vaccinated controls. λFLC concentration was higher in the COVID-19 group than in the non-vaccinated group. The κ:λ ratio was lower in both COVID-19 and non-vaccinated groups in comparison to vaccinated controls. κFLC correlated with all tested parameters (anti-S-RBD IgG, anti-N IgG, λFLC, κ:λ ratio, IgG total, IgG4 and IL-6) except CRP, whereas λFLC correlated with all examined parameters except IgG4. Elevated levels of FLCs in COVID-19 and healthy vaccinated against SARS-CoV-2 patients, as well as the correlation between free light chains with specific anti-SARS-CoV-2 antibodies and IL-6, reflect hyperactivation of the immune system after contact with coronavirus. Furthermore, it seems that serum levels of FLCs might be used as predictive markers of COVID-19. Our findings suggest that free light chains are involved in SARS-CoV-2 infection. However, understanding the exact mechanism requires further investigation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3