Abstract
Dracocephalum heterophyllum (D. heterophyllum) is a traditional Chinese Tibetan medicine that has been used for the treatment of lymphitis, hepatitis, and bronchitis. However, only a few selected chemical components are currently obtained from D. heterophyllum, which limits its further pharmacological applications. In this study, we have obtained samwinol from D. heterophyllum by medium- and high-pressure liquid chromatography separation for the first time. Thereafter, we investigated the protective actions of samwinol against amyloid beta protein fragment 25–35 (Aβ25–35) induced neurotoxicity in cultured rat pheochromocytoma PC-12 cells and explored its underlying mechanisms of action. The results indicated that samwinol could increase cell viability and inhibit the production of reactive oxygen species (ROS) and mitochondria-derived ROS, as assessed by MTT assay, Giemsa staining, and flow cytometry assay. Through Western blot analysis, it was found that samwinol substantially inhibited the phosphorylation of ERK(1/2) and promoted the expression of HO-1 and Nrf2. The data obtained from molecular docking were also consistent with the above conclusions. All of these results showed that samwinol from D. heterophyllum can display significant anti-neuroinflammatory and antioxidant activities in vitro, which are associated with the suppression of ERK/AKT phosphorylation and the activation of the Nrf2/HO-1 signaling pathway. In the future, additional in-depth mechanism studies will be carried out to provide more evidence for the potential of samwinol in the treatment of Alzheimer’s disease.
Funder
the National Sciences Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献