Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass (Eremochloa ophiuroides (Munro) Hack.)

Author:

Li Ling,Xie Chenming,Zong Junqin,Guo Hailin,Li Dandan,Liu Jianxiu

Abstract

Tillering is a key factor that determines the reproductive yields of centipedegrass, which is an important perennial warm-season turfgrass. However, the regulatory mechanism of tillering in perennial plants is poorly understood, especially in perennial turfgrasses. In this study, we created and characterised a cold plasma-mutagenised centipedegrass mutant, mtn1 (more tillering number 1). Phenotypic analysis showed that the mtn1 mutant exhibited high tillering, short internodes, long seeds and a heavy 1000-seed weight. Then, a comparative transcriptomic analysis of the mtn1 mutant and wild-type was performed to explore the molecular mechanisms of centipedegrass tillering. The results revealed that plant hormone signalling pathways, as well as starch and sucrose metabolism, might play important roles in centipedegrass tillering. Hormone and soluble sugar content measurements and exogenous treatment results validated that plant hormones and sugars play important roles in centipedegrass tiller development. In particular, the overexpression of the auxin transporter ATP-binding cassette B 11 (EoABCB11) in Arabidopsis resulted in more branches. Single nucleotide polymorphisms (SNPs) were also identified, which will provide a useful resource for molecular marker-assisted breeding in centipedegrass. According to the physiological characteristics and transcriptional expression levels of the related genes, the regulatory mechanism of centipedegrass tillering was systematically revealed. This research provides a new breeding resource for further studies into the molecular mechanism that regulates tillering in perennial plants and for breeding high-tillering centipedegrass varieties.

Funder

Natural Science Foundation of Jiangsu Province

National Nature Science Foundation of China

Open Fund of Jiangsu Provincial Key Laboratory for the Research and Utilization of Plant Resources

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3