Abstract
Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7–14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.
Funder
Defense Medical Research and Development Program
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献