Abstract
Cobalamin is an essential nutrient required for the normal functioning of cells. Its deficiency can lead to various pathological states. Hydroxocobalamin (HOCbl) and cyanocobalamin (CNCbl) are the forms of vitamin B12 that are most commonly used for supplementation. There is substantial evidence indicating that cobalamins can both suppress and promote oxidative stress; however, the mechanisms underlying these effects are poorly understood. Here, it was shown that the oxidation of thiols catalyzed by HOCbl and CNCbl is accompanied by reactive oxygen species (ROS) production and induces, under certain conditions, oxidative stress and cell death. The form of vitamin B12 and the structure of thiol play a decisive role in these processes. It was found that the mechanisms and kinetics of thiol oxidation catalyzed by HOCbl and CNCbl differ substantially. HOCbl increased the rate of oxidation of thiols to a greater extent than CNCbl, but quenched ROS in combination with certain thiols. Oxidation catalyzed by CNCbl was generally slower. Yet, the absence of ROS quenching resulted in their higher accumulation. The aforementioned results might explain a more pronounced cytotoxicity induced by combinations of thiols with CNCbl. On the whole, the data obtained provide a new insight into the redox processes in which cobalamins are involved. Our results might also be helpful in developing new approaches to the treatment of some cobalamin-responsive disorders in which oxidative stress is an important component.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献