Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data

Author:

Franch Belen,Bautista Alberto San,Fita David,Rubio ConstanzaORCID,Tarrazó-Serrano DanielORCID,Sánchez Antonio,Skakun SergiiORCID,Vermote EricORCID,Becker-Reshef Inbal,Uris Antonio

Abstract

Rice is considered one of the most important crops in the world. According to the Food and Agriculture Organization of the United Nations (FAO), rice production has increased significantly (156%) during the last 50 years, with a limited increase in cultivated area (24%). With the recent advances in remote sensing technologies, it is now possible to monitor rice crop production for a better understanding of its management at field scale to ultimately improve rice yields. In this work, we monitor within-field rice production of the two main rice varieties grown in Valencia (Spain) JSendra and Bomba during the 2020 season. The sowing date of both varieties was May 22–25, while the harvesting date was September 15–17 for Bomba and October 5–8 for JSendra. Rice yield data was collected over 66.03 ha (52 fields) by harvesting machines equipped with onboard sensors that determine the dry grain yield within irregular polygons of 3–7 m width. This dataset was split in two, selecting 70% of fields for training and 30% for validation purposes. Sentinel-2 surface reflectance spectral data acquired from May until September 2020 was considered over the test area at the two different spatial resolutions of 10 and 20 m. These two datasets were combined assessing the best combination of spectral reflectance bands (SR) or vegetation indices (VIs) as well as the best timing to infer final within-field yields. The results show that SR improves the performance of models with VIs. Furthermore, the correlation of each spectral band and VIs with the final yield changes with the dates and varieties. Considering the training data, the best correlation with the yields is obtained on July 4, with R2 for JSendra of 0.72 at 10 m and 0.76 at 20 m resolution, while the R2 for Bomba is 0.87 at 10 m and 0.92 at 20 m resolution. Based on the validation dataset, the proposed models provide within-field yield modelling Mean Absolute Error (MAE) of 0.254 t×ha−1 (Mean Absolute Percentage Error, MAPE, of 3.73%) for JSendra at 10 m (0.240 t×ha−1; 3.48% at 20 m) and 0.218 t×ha−1 (MAPE 5.82%) for Bomba (0.223 t×ha−1; 5.78% at 20 m) on July 4, that is three months before harvest. At parcel level the model’s MAE is 0.176 t×ha−1 (MAPE 2.61%) for JSendra and 0.142 t×ha−1 (MAPE 4.51%) for Bomba. These results confirm the close correlation between the rice yield and the spectral information from satellite imagery. Additionally, these models provide a timeliness overview of underperforming areas within the field three months before the harvest where farmers can improve their management practices. Furthermore, it highlights the importance of optimum agronomic management of rice plants during the first weeks of rice cultivation (40–50 days after sowing) to achieve high yields.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Food and Agriculture Statisticshtttp://www.fao.org/faostat

2. Ministerio de Agricultura, Pesca y Alimentaciónhttps://www.mapa.gob.es

3. United Nationshttps://www.un.org/en

4. La Agricultura Mundial en la Perspectiva del Año 2050http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/Issues_papers_SP/La_agricultura_mundial.pdf

5. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3