Transcriptome Analysis of T. asperellum GDFS 1009 Revealed the Role of MUP1 Gene on the Methionine-Based Induction of Morphogenesis and Biological Control Activity

Author:

Karuppiah Valliappan12ORCID,Zhang Cheng12,Liu Tong3,Li Yi4,Chen Jie12

Affiliation:

1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

2. State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China

3. Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou 570228, China

4. Shanghai Dajing Biotec. Ltd., Shanghai 201100, China

Abstract

Trichoderma spp. are biological control agents extensively used against various plant pathogens. However, the key genes shared for the growth, development and biological activity are unclear. In this study, we explored the genes responsible for the growth and development of T. asperellum GDFS 1009 under liquid-shaking culture compared to solid-surface culture. Transcriptome analysis revealed 2744 differentially expressed genes, and RT-qPCR validation showed that the high-affinity methionine permease MUP1 was the key gene for growth under different media. Deletion of the MUP1 inhibited the transport of amino acids, especially methionine, thereby inhibiting mycelial growth and sporulation, whereas inhibition could be mitigated by adding methionine metabolites such as SAM, spermidine and spermine. The MUP1 gene responsible for the methionine-dependent growth of T. asperellum was confirmed to be promoted through the PKA pathway but not the MAPK pathway. Furthermore, the MUP1 gene also increased the mycoparasitic activity of T. asperellum against Fusarium graminearum. Greenhouse experiments revealed that MUP1 strengthens the Trichoderma-induced crop growth promotion effect and SA-induced pathogen defense potential in maize. Our study highlights the effect of the MUP1 gene on growth and morphological differentiation and its importance for the agricultural application of Trichoderma against plant diseases.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Program of the Shanghai Science and Technology Commission

Shanghai Agriculture Applied Technology Development Program

China Agriculture Research System of MOF and MAR, the National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3