Comparative Transcriptomic Analysis of Key Genes Involved in Citrinin Biosynthesis in Monascus purpureus

Author:

Huang Yingying123ORCID,Yang Chenglong123,Molnár István4ORCID,Chen Shen1

Affiliation:

1. Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China

2. Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China

3. Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou 350003, China

4. VTT Technical Research Centre of Finland, 02100 Espoo, Finland

Abstract

Monascus pigments (MPs) display many beneficial biological activities and have been widely utilized as natural food-grade colorants in the food processing industry. The presence of the mycotoxin citrinin (CIT) seriously restricts the application of MPs, but the gene regulation mechanisms governing CIT biosynthesis remain unclear. We performed a RNA-Seq-based comparative transcriptomic analysis of representative high MPs-producing Monascus purpureus strains with extremely high vs. low CIT yields. In addition, we performed qRT-PCR to detect the expression of genes related to CIT biosynthesis, confirming the reliability of the RNA-Seq data. The results revealed that there were 2518 differentially expressed genes (DEGs; 1141 downregulated and 1377 upregulated in the low CIT producer strain). Many upregulated DEGs were associated with energy metabolism and carbohydrate metabolism, with these changes potentially making more biosynthetic precursors available for MPs biosynthesis. Several potentially interesting genes that encode transcription factors were also identified amongst the DEGs. The transcriptomic results also showed that citB, citD, citE, citC and perhaps MpigI were key candidate genes to limit CIT biosynthesis. Our studies provide useful information on metabolic adaptations to MPs and CIT biosynthesis in M. purpureus, and provide targets for the fermentation industry towards the engineering of safer MPs production.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province, China

Public Scientific Research Program of Fujian Province, China

Fujian Academy of Agricultural Sciences

VTT Technical Research Centre of Finland

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3