An Improved Calibration Method for Photonic Mixer Device Solid-State Array Lidars Based on Electrical Analog Delay

Author:

Wang Xuanquan,Song PingORCID,Zhang Wuyang

Abstract

As a typical application of indirect-time-of-flight (ToF) technology, photonic mixer device (PMD) solid-state array Lidar has gained rapid development in recent years. With the advantages of high resolution, frame rate and accuracy, the equipment is widely used in target recognition, simultaneous localization and mapping (SLAM), industrial inspection, etc. The PMD Lidar is vulnerable to several factors such as ambient light, temperature and the target feature. To eliminate the impact of such factors, a proper calibration is needed. However, the conventional calibration methods need to change several distances in large areas, which result in low efficiency and low accuracy. To address the problems, this paper presents an improved calibration method based on electrical analog delay. The method firstly eliminates the lens distortion using a self-adaptive interpolation algorithm, meanwhile it calibrates the grayscale image using an integral time simulating based method. Then, the grayscale image is used to estimate the parameters of ambient light compensation in depth calibration. Finally, by combining four types of compensation, the method effectively improves the performance of depth calibration. Through several experiments, the proposed method is more adaptive to multiscenes with targets of different reflectivities, which significantly improves the ranging accuracy and adaptability of PMD Lidar.

Funder

National Defense Basic Scientific Research Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3