High Order Split Operators for the Time-Dependent Wavepacket method of Triatomic Reactive Scattering in Hyperspherical Coordinates

Author:

Umer UmairORCID,Zhao Hailin,Usman Syed KazimORCID,Sun ZhigangORCID

Abstract

Since the introduction of a series of methods for solving the time-dependent Schrödinger equation (TDSE) in the 80s of the last centry, such as the Fourier transform, the split operator (SO), the Chebyshev polynomial propagator, and complex absorbing potential, investigation of the molecular dynamics within quantum mechanics principle have become popular. In this paper, the application of the time-dependent wave packet (TDWP) method using high-order SO propagators in hyperspherical coordinates for solving triatomic reactive scattering was investigated. The fast sine transform was applied to calculate the derivatives of the wave function of the radial degree of freedom. These high-order SO propagators are examined in different forms, i.e., TVT (Kinetic–Potential–Kinetic) and VTV (Potential–Kinetic–Potential) forms with three typical triatomic reactions, H + H 2 , O + O 2 and F + HD. A little difference has been observed among the performances of high-order SO propagators in the TVT and VTV representations in the hyperspherical coordinate. For obtaining total reaction probabilities with 1% error, some of the S class high-order SO propagators, which have symmetric forms, are more efficient than second order SO for reactions involving long lived intermediate states. High order SO propagators are very efficient for obtaining total reaction probabilities.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3