Abstract
Modelling causal relationships has become popular across various disciplines. Most common frameworks for causality are the Pearlian causal directed acyclic graphs (DAGs) and the Neyman-Rubin potential outcome framework. In this paper, we propose an information theoretic framework for causal effect quantification. To this end, we formulate a two step causal deduction procedure in the Pearl and Rubin frameworks and introduce its equivalent which uses information theoretic terms only. The first step of the procedure consists of ensuring no confounding or finding an adjustment set with directed information. In the second step, the causal effect is quantified. We subsequently unify previous definitions of directed information present in the literature and clarify the confusion surrounding them. We also motivate using chain graphs for directed information in time series and extend our approach to chain graphs. The proposed approach serves as a translation between causality modelling and information theory.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献