Low-Cost Sensor Based on SDR Platforms for TETRA Signals Monitoring

Author:

Helbet RobertORCID,Bechet Paul,Monda Vasile,Miclaus SimonaORCID,Bouleanu Iulian

Abstract

The paper presents the design and implementation of an electromagnetic field monitoring sensor for the measurement of the Terrestrial Truncked Radio (TETRA) signals using low-cost software defined radio (SDR) platforms. The sensor includes: an SDR platform, a Global Positioning System (GPS) module and a hardware control module. Several SDR platforms having different resolutions of the analog–digital converters were tested in the first phase. The control module was implemented in two variants: a fixed one, using a laptop, and a mobile one, using a Raspberry Pi. The tests demonstrate the following achieved performances: instantaneous acquisition band of 5.12 MHz; dynamic range of the input signal level of (−100 to −30) dBm; frequency resolution of 2.5 kHz; portability and flexibility for use in outdoor environments. The sensor allows complete reporting through amplitude-time-frequency-location descriptors, and in the case of the mobile version, the system performs correctly even at a maximum speed of displacement of 120 km/h. The price of the mobile sensor system variant is approximately EUR 320.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Terrestrial Radio Signal Receiver Using RTL-SDR GNU Radio Based on Raspberry Pi;2024 International Electronics Symposium (IES);2024-08-06

2. Estimating the Effect of Gaussian Noise on Short-Range Wireless Devices;2023 Dynamics of Systems, Mechanisms and Machines (Dynamics);2023-11-14

3. Real-Time Statistical Measurement of Wideband Signals Based on Software Defined Radio Technology;Electronics;2023-07-03

4. Signal Intelligence: Automatic Carrier Detection with an Instantaneous Bandwidth of 27 MHz;2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON);2022-10-12

5. Electromagnetic spectrum monitoring of LTE channels based on SDR portable sensor: preliminary analysis;IOP Conference Series: Materials Science and Engineering;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3