Building Orientation and Post Processing of Ti6Al4V Produced by Laser Powder Bed Fusion Process

Author:

Rovetta Rosaria1ORCID,Ginestra Paola1,Ferraro Rosalba Monica2,Zohar-Hauber Keren3,Giliani Silvia2ORCID,Ceretti Elisabetta1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy

2. Institute of Molecular Medicine “Angelo Nocivelli”, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy

3. Metallurgical and Powders Technologies Lab, Institute of Metals, Technion City, Haifa 320003, Israel

Abstract

Laser powder bed fusion, particularly the selective laser melting (SLM), is an additive manufacturing (AM) technology used to produce near-net-shaped engineering components for biomedical applications, especially in orthopaedics. Ti6Al4V is commonly used for producing orthopaedic implants using SLM because it has excellent mechanical qualities, a high level of biocompatibility, and corrosion resistance. However, the main problems associated with this process are the result of its surface properties: it has to be able to promote cell attachment but, at the same time, avoid bacteria colonization. Surface modification is used as a post-processing technique to provide items the unique qualities that can improve their functionality and performance in particular working conditions. The goal of this work was to produce and analyse Ti6Al4V samples fabricated by SLM with different building directions in relation to the building plate (0° and 45°) and post-processed by anodization and passivation. The results demonstrate how the production and post processes had an impact on osteoblast attachment, mineralization, and osseointegration over an extended period of time. Though the anodization treatment result was cytotoxic, the biocompatibility of as-built specimens and specimens after passivation treatment was confirmed. In addition, it was discovered that effective post-processing increases the mineralization of these types of 3D-printed surfaces.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3