Research on Degradation State Recognition of Axial Piston Pump under Variable Rotating Speed

Author:

Guo RuiORCID,Liu Yingtang,Zhao Zhiqian,Zhao JingyiORCID,Wang Jianwei,Cai Wei

Abstract

Under the condition of variable rotating speed, it is difficult to extract the degradation characteristics of the axial piston pump, which also reduces the accuracy of degradation recognition. To address these problems, this paper proposes a degradation state recognition method for axial piston pumps by combining spline-kernelled chirplet transform (SCT), adaptive chirp mode pursuit (ACMP), and extreme gradient boosting (XGBoost). Firstly, SCT and ACMP are proposed to deal with the vibration signal instability and high noise of the axial piston pump under variable rotating speed. The instantaneous frequency (IF) of the axial piston pump can be extracted effectively by obtaining the accurate time-frequency distribution of signal components. Then, stable angular domain vibration signals are obtained by re-sampling, and multi-dimensional degradation characteristics are extracted from the angular domain and order spectrum. Finally, XGBoost is used to classify the selected characteristics to recognize the degradation state. In this paper, the vibration signals in four different degradation states are collected and analyzed through the wear test of the valve plate of the axial piston pump. Compared with different pattern recognition algorithms, it is verified that this method can ensure high recognition accuracy.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hebei Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference35 articles.

1. Internal leakage detection of hydraulic cylinder based on BP neural network;Li;Chin. Hydraul. Pneum.,2017

2. Development status and test platform construction of high pressure hydraulic components in China;Wang;Constr. Mach. Equip.,2012

3. INVESTIGATION ON WAVELET-BASED METHOD OF FAULT DIAGNOSIS FOR A PISTON PUMP

4. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine

5. Multi-scale enveloping order spectrogram for rotating machine health diagnosis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3