Effect of Wettability on Vacuum-Driven Bubble Nucleation

Author:

Pradhan SushobhanORCID,Counts Sage,Enget Charissa,Bikkina Prem KumarORCID

Abstract

Nucleation is the formation of a new phase that has the ability to irreversibly and spontaneously grow into a large-sized nucleus within the body of a metastable parent phase. In this experimental work, the effect of wettability on the incipiation of vacuum-driven bubble nucleation, boiling, and the consequent rate of evaporative cooling are studied. One hydrophilic (untreated), and three hydrophobic (chlorinated polydimethylsiloxane, chlorinated fluoroalkylmethylsiloxane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane) glass vials of different wettabilities were filled with degassed deionized water and exposed to a controlled vacuum inside a transparent desiccator. The vacuum was increased by 34 mbar abs. (1 inHg rel.) steps with 15-min waiting period to observe bubble nucleation. The average onset pressures for gas/vapor bubble nucleation in CM, CF, and HT vials were 911 ± 30, 911 ± 34, and 925 ± 17 mbar abs., respectively. Bubble nucleation was not observed in hydrophilic vial even at 65 mbar abs. pressure. During the vacuum boiling at 65 mbar abs., the average temperatures of water in hydrophilic, CM, CF, and HT vials reduced from room temperature (~22.5 °C) to 15.2 ± 0.9, 13.1 ± 0.9, 12.9 ± 0.5, and 11.2 ± 0.3 °C, respectively. The results of this study show that the wettability of the container surface has a strong influence on the onset vacuum for vapor/gas bubble nucleation, rate of vacuum boiling, and evaporative cooling. These findings are expected to be useful to develop wettability-based vacuum boiling technologies.

Funder

Oklahoma State University

American Chemical Society Petroleum Research Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3