Artificial Neural Network Model for the Prediction of Methane Bi-Reforming Products Using CO2 and Steam

Author:

Deng Hao,Guo Yi

Abstract

The bi-reforming of methane (BRM) is a promising process which converts greenhouse gases to syngas with a flexible H2/CO ratio. As there are many factors that affect this process, the coupled effects of multi-parameters on the BRM product are investigated based on Gibbs free energy minimization. Establishing a reliable model is the foundation of process optimization. When three input parameters are changed simultaneously, the resulting BRM products are used as the dataset to train three artificial neural network (ANN) models, which aim to establish the BRM prediction model. Finally, the trained ANN models are used to predict the BRM products when the conditions vary in and beyond the training range to test their performances. Results show that increasing temperature is beneficial to the conversion of CH4. When the molar flow of H2O is at a low level, the increase in CO2 can enhance the H2 generation. While it is more than 0.200 kmol/h, increasing the CO2 flowrate leads to the increase and then decrease in the H2 molar flow in the reforming products. When the numbers of hidden layer neurons in ANN models are set as (3, 3), (3, 6) and (6, 6), all the correlation coefficients of training, validation and test are higher than 0.995. When these ANN models are used to predict the BRM products, the variation range of the prediction error becomes narrower, and the standard deviation decreases with the increase in neuron number. This demonstrates that the ANN model with more neurons has a higher accuracy. The ANN model with neuron numbers of (6, 6) can be used to predict the BRM products even when the operating conditions are beyond the training ranges, demonstrating that this model has good extension performance. This work lays the foundation for an artificial intelligent model for the BRM process, and established ANN models can be further used to optimize the operating parameters in future work.

Funder

science and technology research program of Chongqing Yubei District Science & Technology Bureau

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3