Advancements in Phase-Field Modeling for Fracture in Nonlinear Elastic Solids under Finite Deformations

Author:

Zhang Gang1ORCID,Tang Cheng1,Chen Peng1,Long Gongbo1,Cao Jiyin1,Tang Shan23

Affiliation:

1. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

3. State Key Laboratory of Structural Analysis for Industrial Equipment, International Research Center for Computational Mechanics, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

Abstract

The prediction of failure mechanisms in nonlinear elastic materials holds significant importance in engineering applications. In recent years, the phase-field model has emerged as an effective approach for addressing fracture problems. Compared with other discontinuous fracture methods, the phase-field method allows for the easy simulation of complex fracture paths, including crack initiation, propagation, coalescence, and branching phenomena, through a scalar field known as the phase field. This method offers distinct advantages in tackling complex fracture problems in nonlinear elastic materials and exhibits substantial potential in material design and manufacturing. The current research has indicated that the energy distribution method employed in phase-field approaches significantly influences the simulated results of material fracture, such as crack initiation load, crack propagation path, crack branching, and so forth. This impact is particularly pronounced when simulating the fracture of nonlinear materials under finite deformation. Therefore, this review outlines various strain energy decomposition methods proposed by researchers for phase-field models of fracture in tension–compression symmetric nonlinear elastic materials. Additionally, the energy decomposition model for tension–compression asymmetric nonlinear elastic materials is also presented. Moreover, the fracture behavior of hydrogels is investigated through the application of the phase-field model with energy decomposition. In addition to summarizing the research on these types of nonlinear elastic body fractures, this review presents numerical benchmark examples from relevant studies to assess and validate the accuracy and effectiveness of the methods presented.

Funder

National Natural Science Foundation of China

Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3