Edge-Based Minimal k-Core Subgraph Search

Author:

Wang Ting1ORCID,Jiang Yu1,Yang Jianye1,Xing Lei1

Affiliation:

1. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510700, China

Abstract

In social networks, k-core is commonly used to measure the stability of a network. When a user in a k-core leaves the network, other users may follow the user to leave. Hence, maintaining a key user is important to keep the stability of a network. It is known that an edge between two users models the relationship between the two users. In some scenarios, maintaining a relationship comes at a cost. Therefore, selectively in maintaining the relationships between users is crucial. In this paper, we for the first time conceive the concept of an edge-based minimal k-core model. An edge-based minimal k-core is a k-core with a minimal number of edges. In other words, removing any edge in an edge-based minimal k-core would make it not be a k-core any more. Based on this model, we proposed two problems, namely, an edge-based minimal k-core subgraph search (EMK-SS) and an edge-based minimal k-core subgraph search with a query node q (EMK-q-SS). Given a graph G, an integer k, and a query node (a key user) q, the EMK-q-SS problem is to find all the edge-based minimal k-cores containing the query node q, and the EMK-SS problem is to find all the edge-based minimal k-cores. We also theoretically prove that the two problems are both NP-complete. To deal with the proposed problems, we design two novel algorithms, namely the edge deletion algorithm and edge extension algorithm. Further, a graph partitioning technique is employed to speed up the computation. Comprehensive experiments on synthetic and real networks are conducted to demonstrate the effect and efficiency of our proposed methods.

Funder

National Key Research and Development Program of China

PCL Project

Cultivation Project of PZL

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3