A Normalized Global Economic Policy Uncertainty Index from Unsupervised Machine Learning

Author:

Xu Wangfang1,Rao Wenjia2,Wei Longbao1ORCID,Wang Qianqian3

Affiliation:

1. China Academy for Rural Development, Zhejiang University, Hangzhou 310058, China

2. School of Science, Hangzhou Dianzi University, Hangzhou 310018, China

3. School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

In this work, we integrate the conventional unsupervised machine learning algorithm—the Principal Component Analysis (PCA) with the Random Matrix Theory to propose a novel global economic policy uncertainty (GPEU) index that accommodates global economic policy fluctuations. An application of the Random Matrix Analysis illustrates the majority of the PCA components of EPU’s mirror random patterns that lack substantial economic information, while the only exception—the dominant component—is non-random and serves as a fitting candidate for the GEPU index. Compared to the prevalent GEPU index, which amalgamates each economy’s EPU weighted by its GDP value, the new index works equally well in identifying typical global events. Most notably, the new index eliminates the requirement of extra economic data, thereby avoiding potential endogeneity in empirical studies. To demonstrate this, we study the correlation between gold future volatility and GEPU using the GARCH-MIDAS model, and show that the newly proposed GEPU index outperforms the previous version. Additionally, we employ complex network methodologies to present a topological characterization of the GEPU indices. This research not only contributes to the advancement of unsupervised machine learning algorithms in the economic field but also proposes a robust and effective GEPU index that outperforms existing models.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference46 articles.

1. Baker, S.R., Bloom, N., and Davis, S.J. (2013). Measuring Economic Policy Uncertainty. NBER Work. Pap., 21633. Available online: abfer.org/media/abfer-events-2013/annual-conference/corporate-finance/track2-presentation-measuring-economic-policy-uncertainty.pdf.

2. Measuring economic policy uncertainty;Baker;Quart. J. Econ.,2016

3. Policy Uncertainty in Japan;Saxegaard;J. Jpn. Int. Econ.,2022

4. Baker, S.R., Bloom, N., Davis, S.J., and Wang, X.X. (2013). University of Chicago. Unpublished Paper.

5. A new economic policy uncertainty index for Spain;Ghirelli;Econ. Lett.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3