Invariant Finitely Additive Measures for General Markov Chains and the Doeblin Condition

Author:

Zhdanok Alexander1ORCID

Affiliation:

1. Institute for Information Transmission Problems (A.A. Kharkevich Institute) of Russian Academy of Sciences, 19/1 Bolshoy Karetny Per., 127051 Moscow, Russia

Abstract

In this paper, we consider general Markov chains with discrete time in an arbitrary measurable (phase) space. Markov chains are given by a classical transition function that generates a pair of conjugate linear Markov operators in a Banach space of measurable bounded functions and in a Banach space of bounded finitely additive measures. We study sequences of Cesaro means of powers of Markov operators on the set of finitely additive probability measures. It is proved that the set of all limit measures (points) of such sequences in the weak topology generated by the preconjugate space is non-empty, weakly compact, and all of them are invariant for this operator. We also show that the well-known Doeblin condition (D) for the ergodicity of a Markov chain is equivalent to condition (∗): all invariant finitely additive measures of the Markov chain are countably additive, i.e., there are no invariant purely finitely additive measures. We give all the proofs for the most general case.

Funder

Russian Foundation of Basic Research

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. Finitely additive measures in the ergodic theory of Markov chains I;Zhdanok;Sib. Adv. Math.,2003

2. Finitely additive measures in the ergodic theory of Markov chains II;Zhdanok;Sib. Adv. Math.,2003

3. Sur les probabilités en chaine;Kryloff;C. R. Acad. Sci. Paris,1937

4. Les propriétés ergodiques des suites de probabilités en chaine;Kryloff;C. R. Acad. Sci. Paris,1937

5. Operator-theoretical treatment of Markoff’s processes and mean ergodic theorem;Yosida;Ann. Math. Second Ser.,1941

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3