Common Fixed Point Theorems for Novel Admissible Contraction with Applications in Fractional and Ordinary Differential Equations

Author:

Atiponrat Watchareepan12ORCID,Varnakovida Pariwate34,Chanthorn Pharunyou12ORCID,Suebcharoen Teeranush12,Charoensawan Phakdi12ORCID

Affiliation:

1. Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai 50200, Thailand

2. Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

3. Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Thung Khru, Bangkok 10140, Thailand

4. KMUTT Geospatial Engineering and Innovation Center, Faculty of Science, King Mongkut’s University of Technology Thonburi, Thung Khru, Bangkok 10140, Thailand

Abstract

In our work, we offer a novel idea of contractions, namely an (α,β,γ)P−contraction, to prove the existence of a coincidence point and a common fixed point in complete metric spaces. This leads us to an extension of previous results in the literature. Furthermore, we applied our acquired results to prove the existence of a solution for ordinary and fractional differential equations with integral-type boundary conditions.

Funder

Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

Chiang Mai University, Chiang Mai, Thailand

King Mongkut’s University of Technology Thonburi, Thung Khru, Bangkok

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Some fixed point results in b-metric spaces approach to the existence of a solution to nonlinear integral equations;Huang;J. Fixed Point Theory Appl.,2018

2. Applying new fixed point theorems on fractional and ordinary differential equations;Abdeljawad;Adv. Differ. Equ.,2019

3. Common fixed point theorems for auxiliary functions with applications in fractional differential equation;Wongsaijai;Adv. Differ. Equ.,2021

4. Viscosity modification with parallel inertial two steps forward-backward splitting methods for inclusion problems applied to signal recovery;Cholamjiak;Chaos Solitons Fractals,2022

5. An inertial parallel algorithm for a finite family of G-nonexpansive mappings applied to signal recovery;Suparatulatorn;AIMS Math.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3