Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment

Author:

Kim Min-SeonORCID,Lim Bo-Young,Lee KisungORCID,Kwon Hyuk-YoonORCID

Abstract

In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the model accuracy by periodically rebuilding the model based on the accumulated datasets including recent datasets. Its learning time incrementally increases as the datasets increase, but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes the model only with a limited number of recent datasets, noting that the data streams are dependent on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of accuracy. To verify the proposed update strategies, we extensively apply them to not only fully trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding model based on BERT. Through extensive experiments using two real tweet streaming datasets, we show that the entire model update improves the classification accuracy of the pre-trained offline model; the partial model update also improves it, which shows comparable accuracy with the entire model update, while significantly increasing the learning speed. We also validate the scalability of the proposed distributed learning architecture by showing that the model learning and inference time decrease as the number of worker nodes increases.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing user reactions using relevance between location information of tweets and news articles;EPJ Data Science;2024-06-26

2. Text Stream Classification: Literature Review and Current Trends;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3