Enhancing the Cryopreservation System of Larch Embryogenic Culture by Optimizing Pre-Culture, Osmoprotectants, and Rapid Thawing

Author:

Ma Miaomiao1,Wang Xuhui1,Zhang Chunyan1,Pak Solme1,Wu Hongran1,Yang Jingli1,Li Chenghao1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

Abstract

Cryopreservation is considered the safe and efficient strategy for the long-term conservation of embryogenic cultures. The objective of this study was to cryopreserve the embryogenic tissues of hybrid larch to overcome the result raised by rapid growth rates of conifer embryogenic cultures necessitating frequent sub-culturing. We systematically evaluated several parameters, including the pre-culture method (liquid or solid), osmoprotectant type (DMSO, sucrose, or PEG6000), duration of cryoprotection (1–3 h), and thawing temperature (4 °C, 25 °C, or 40 °C). After one month of cryopreservation, we assessed the regeneration efficiency and maturation ability of both cryo-preserved and non-cryopreserved tissues. Our optimized protocol involves pre-culturing embryonic tissue on the solid medium with 0.4 M sorbitol for 48 h, followed by treatment with 10% DMSO, 0.4 M sucrose, and 15% PEG6000 for 1 h on ice, and immersion in liquid nitrogen with rapid thawing at 40 °C. Notably, the use of solid media during pre-culturing was crucial to enhancing the success rate of cryopreservation. Using protocol optimization, we achieved high embryogenic tissue survival rates of over 80% without affecting the ability of somatic embryogenesis. This work provides a comprehensive set of steps for routine cryopreservation of embryogenic tissues for long-term conservation in hybrid larch, along with sample protocols for cryopreservation of larch. The results demonstrate that vitrification is a reliable method for preserving embryogenic tissues of hybrid larch with broader implications for the cryopreservation of other plant species. Further optimization and standardization of protocols across different species would ensure the preservation of genetic diversity and facilitate future research in plant biotechnology that benefits human health, food security, and environmental sustainability.

Funder

Major Projects of Agricultural Biological Breeding of China

Publisher

MDPI AG

Subject

Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3