Abstract
The biomass of one type cultivated diatoms (Pseudostaurosira trainorii), being a source of 3D-stuctured biosilica and organic matter—the source of carbon, was thermally processed to become an electroactive material in a potential range adequate to become an anode in lithium ion batteries. Carbonized material was characterized by means of selected solid-state physics techniques (XRD, Raman, TGA). It was shown that the pyrolysis temperature (600 °C, 800 °C, 1000 °C) affected structural and electrochemical properties of the electrode material. Biomass carbonized at 600 °C exhibited the best electrochemical properties reaching a specific discharge capacity of 460 mAh g−1 for the 70th cycle. Such a value indicates the possibility of usage of biosilica as an electrode material in energy storage applications.
Subject
General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献