Abstract
Recent discoveries have demonstrated that the surfaces of Mars, Ceres and other celestial bodies, as well as asteroids and comets, are characterized by the presence of ammonium-bearing minerals. A careful study of remote data compared with the analyses of more accurate laboratory data might allow a better remote characterization of planetary bodies. In this paper, the reflectance spectra of some ammoniated hydrous and anhydrous salts, namely sal-ammoniac NH4Cl, larderellite (NH4)B5O7(OH)2·H2O, mascagnite (NH4)SO4, struvite (NH4)MgPO4·6H2O and tschermigite (NH4)Al(SO4)2·12H2O, were collected at 293 and at 193 K. The aim is to detect how the NH4 vibrational features are affected by the chemical and structural environment. All samples were recovered after cooling cycles and were characterized by X-ray powder diffraction. Reflectance spectra of the studied minerals show absorption features around 1.3, 1.6, 2.06, 2.14, 3.23, 5.8 and 7.27 μm, related to the ammonium group. Between them, the 2ν3 at ~1.56 μm and the ν3 + ν4 at ~2.13 μm are the most affected modes by crystal structure type, with their position being strictly related to both anionic group and the strength of the hydrogen bonds. The reflectance spectra of water-rich samples [struvite (NH4)MgPO4·6(H2O) and tschermigite (NH4)Al(SO4)2·12(H2O)] show only H2O fundamental absorption features in the area from 2 to 2.8 μm and a band from hygroscopic water at 3 μm. Thermal analyses (TA), thermal gravimetry (TG) and differential scanning calorimetry (DSC) allowed to evaluate the dehydration temperatures and the occurring phase transitions and decompositions in the analyzed samples. In almost all samples, endothermic peaks at distinct temperatures were registered associated to loss of water molecules, differently linked to the structures. Moreover, an endothermic peak at 465 K in sal-ammoniac was associated to the phase transition from CsCl to NaCl structure type.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献