Abstract
Acid mine drainage (AMD) is globally recognized as one of the environmental pollutants of the priority concern due to high concentrations of toxic metals and sulfates. More rigorous environmental legislation requires exploitation of effective technologies to remove toxic metals from contaminated streams. In view of high selectivity, effectiveness, durability, and low energy demands, the separation of toxic metal ions using immobilized membranes with admixed extractants could ameliorate water quality. Cellulose triacetate based polymer inclusion membranes (PIMs), with extractant and plasticizer, were studied for their ability to transport of As(V) ions from synthetic aqueous leachates. The effects of the type and concentration of extractant, plasticizer content, and sulfuric acid concentration in source phase on the arsenic removal efficiency have been assessed. Under the best of applied conditions, PIM with Cyanex 921 as extractant and o-nitrophenyl octyl ether (o-NPOE) as plasticizer showed high repeatability and excellent transport activity for selective removal of As(V) from AMD.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献