Abstract
Accurate prediction of mineral grades is a fundamental step in mineral exploration and resource estimation, which plays a significant role in the economic evaluation of mining projects. Currently available methods are based either on geometrical approaches or geostatistical techniques that often considers the grade as a regionalised variable. In this paper, we propose a grade estimation technique that combines multilayer feed-forward neural network (NN) and k-nearest neighbour (kNN) models to estimate the grade distribution within a mineral deposit. The models were created by using the available geological information (lithology and alteration) as well as sample locations (easting, northing, and altitude) obtained from the drill hole data. The proposed approach explicitly maintains pattern recognition over the geological features and the chemical composition (mineral grade) of the data. Prior to the estimation of grades, rock types and alterations were predicted at unsampled locations using the kNN algorithm. The presented case study demonstrates that the proposed approach can predict the grades on a test dataset with a mean absolute error (MAE) of 0.507 and R2=0.528, whereas the traditional model, which only uses the coordinates of sample points as an input, yielded an MAE value of 0.862 and R2=0.112. The proposed approach is promising and could be an alternative way to estimates grades in a similar modelling tasks.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference70 articles.
1. Applied Mineral Inventory Estimation;Sinclair,2002
2. Reserve estimation of an open pit mine under price uncertainty by real option approach
3. An Introduction to Cut-Off Grade Estimation;Rendu,2014
4. Limit Kriging
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献