Probing the Local Atomic Structure of In and Cu in Sphalerite by XAS Spectroscopy Enhanced by Reverse Monte Carlo Algorithm

Author:

Trigub Alexander L.,Trofimov Nikolay D.,Tagirov Boris R.,Nickolsky Max S.ORCID,Kvashnina Kristina O.

Abstract

The distortion of atomic structure around In and Cu dopants in sphalerite ZnS was explored by extended X-ray absorption fine structure (EXAFS) spectroscopy enhanced by reverse Monte Carlo (RMC) simulation (RMC-EXAFS method). These data were complemented with quantum chemical Density Functional Theory (DFT) calculations and theoretical modeling of X-ray absorption near edge spectroscopy (XANES) spectra. The RMC-EXAFS method showed that in the absence of Cu, the In-bearing solid solution is formed via the charge compensation scheme 3Zn2+↔2In3+ + □, where □ is a Zn vacancy. The coordination spheres of In remain undistorted. Formation of the solid solution in the case of (In, Cu)-bearing sphalerites follows the charge compensation scheme 2Zn2+↔Cu+ + In3+. In the solid solution, splitting of the interatomic distances in the 2nd and 3rd coordination spheres of In and Cu is observed. The dopants’ local atomic structure is slightly distorted around In but highly distorted around Cu. The DFT calculations showed that the geometries with close arrangement (clustering) of the impurities—In and Cu atoms, or the In atom and a vacancy—are energetically more favorable than the random distribution of the defects. However, as no heavy In atoms were detected in the 2nd shell of Cu by means of EXAFS, and the 2nd shell of In was only slightly distorted, we conclude that the defects are distributed randomly (or at least, not close to each other). The disagreement of the RMC-EXAFS fittings with the results of the DFT calculations, according to which the closest arrangement of dopants is the most stable configuration, can be explained by the presence of other defects of the sphalerite crystal lattice, which were not considered in the DFT calculations.

Funder

Russian Science Foundation

Russian Ministry of Science and Education

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3