The Bigrlyi Tabular Sandstone-Hosted Uranium–Vanadium Deposit, Ngalia Basin, Central Australia

Author:

Schmid Susanne,Taylor Wayne R.ORCID,Jordan Daniel P.

Abstract

The Bigrlyi deposit is a tabular, sandstone-hosted, uranium–vanadium deposit of Carboniferous age located in the Ngalia Basin of central Australia. The deposit is similar to the continental, fluvial Saltwash-type of sandstone-hosted U-V deposits which are well known from the Colorado Plateau, USA. Most mineralization at Bigrlyi occurs as thin, multiple-stacked, stratiform lenses at the base of fluvial channels near the contact between a grey sandstone succession and a hematitic, purple–red sandstone succession. A larger halo of lower grade vanadium mineralization extends beyond the main U-V-mineralized zone. The host is an immature, feldspathic sandstone, grading into arkose and lithic-rich variants. Lithic ‘rip-up’ clasts of clay-rich sediments are common in the basal parts of fluvial channels, and are frequently the focus of, and have acted as sites for, U-V mineralization. Coffinite and uraninite are the main uranium minerals, with the former dominant. Vanadium is mainly hosted by Fe-V-bearing clays and chlorite, including roscoelite, grading into vanadian illite, the interlayer mineral corrensite, and altered detrital biotite. The V-Fe–oxyhydroxide minerals montroseite, haggite and doloresite, and altered detrital Fe-Ti oxides, are minor V-hosts. Mineralized zones correlate with enrichments in Se, Li, Ba, Be, Mo, Mg and Fe, and elevated Se/S ratios are characteristic of U-mineralized zones. Petrographic studies show that a heterogeneous mixture of variably mineralized lithic clasts is present; in the same rock, some clasts are Fe-rich and only weakly U-V-mineralized, while other clasts are strongly V- and/or U-mineralized. These observations point to mineralization processes that did not take place in-situ in the host sandstone at the site of deposition as required by conventional groundwater models. Lead isotope results provide evidence of the open-system mobility of radiogenic elements in parts of the deposit. In V-bearing zones, radiogenic Pb contents were found to be unsupported by current U levels, suggesting that over time U has been mobilized from these zones and redistributed, resulting in U-enrichment in other parts of the deposit. Mobility pathways were likely open over time from early in the history of the Bigrlyi deposit. A hybrid mineralization model, involving an interplay between solution-precipitation processes, detrital transport and post-depositional U remobilization, is proposed for Bigrlyi. Ferrous-ion-bearing clay minerals and pyrite are considered to be the most likely primary reductants/adsorbents, while the deposit is lacking carbonaceous matter.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference44 articles.

1. Bigrlyi uranium-vanadium deposit;Taylor,2017

2. Geological Classification of Uranium Deposits and Description of Selected Examples; IAEA-TECDOC-1842,2018

3. Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits

4. Geology of epigenetic uranium deposits in sandstone in the United States;Finch;US Geol. Surv. Prof. Pap.,1967

5. Prospecting criteria for sandstone-type uranium deposits;Grutt,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3