Fabrication and Characterization of Piezoelectric PEO/SF/BaTiO3 Scaffolds for Cardiac Tissue Engineering

Author:

Khalil Abdelrahman K. A.1ORCID,Fouad Hassan2ORCID,Abdal-hay Abdalla34ORCID,Abd El-salam Nasser M.2,Abdelrazek Khalil Khalil5ORCID

Affiliation:

1. Graduated from the Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 12372, Saudi Arabia

2. Applied Medical Science Department, Community College, King Saud University, Riyadh 12642, Saudi Arabia

3. School of Dentistry, University of Queensland, Herston Campus, St. Lucia, QLD 4072, Australia

4. Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt

5. Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

Abstract

The existence of an intrinsic electrical platform responsible for the formation and transmission of impulses is essential, especially in cardiac tissue. However, most cardiac tissue made from biodegradable polymeric materials lacks conductive characteristics; this delays regional conduction, potentially causing arrhythmias. This study proposes a conductive polyethylene oxide (PEO)/silk fibroin (SF)-based material conjugated with conductive nanoparticles as a cardiac patch to fix any infarcted heart part. A new composite of PEO/15 wt%SF/0.2 wt%BaTiO3 was prepared and characterized in vitro. The obtained patches were characterized by conventional Bragg-platinum-conductive action (XRD), FTIR spectroscopy, Raman spectra, and thermogravimetric analysis. A PiezoTester device was used to evaluate the piezoelectric properties. The produced samples of 500 μm thickness were assessed in tapping mode. The applied load was selected to be as low as possible, and the frequencies were adjusted to simulate the heartbeats, ranging from 10 to 100 Hz. The results showed that a maximum of around 1100 mV was obtained at a load of 20 N. A maximum of about 80 mV was received at an applied force of 1 N and a frequency of 100 Hz, which matches the electricity generated by the human heart. The cytotoxicity effect of prepared films was tested against AC16 cells using microculture tetrazolium assay (MTT). The pristine PEO cell viability either was not affected by adding SF or slightly decreased. However, the cell viability dramatically increased by adding BaTiO3 to the PEO/SF composites. The confocal microscope images proved that the cells showed a spread morphology. The cells adhered to the PEO membranes and demonstrated a well-spread morphology. Overall, our study suggests that the PEO/SF/BaTiO3 composite can be a promising cardiac patch material for repairing infarcted heart tissue, as it is conductive, has good mechanical properties, and is biocompatible.

Funder

National Plan for Science, Technology, and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3