Abstract
The potential of tree bark, a by-product of the woodworking industry, has been studied for more than seven decades. Bark, as a sustainable raw material, can replace wood or other resources in numerous applications in construction. In this study, the acoustic properties of bark-based panels were analyzed. The roles of the particle size (4–11 mm and 10–30 mm), particle orientation (parallel and perpendicular) and density (350–700 kg/m3) of samples with 30 mm and 60 mm thicknesses were studied at frequencies ranging from 50 to 6400 Hz. Bark-based boards with fine-grained particles have been shown to be better in terms of sound absorption coefficient values compared with coarse-grained particles. Bark composites mixed with popcorn bonded with UF did not return the expected results, and it is not possible to recommend this solution. The best density of bark boards to obtain the best sound absorption coefficients is about 350 kg/m3. These lightweight panels achieved better sound-absorbing properties (especially at lower frequencies) at higher thicknesses. The noise reduction coefficient of 0.5 obtained a sample with fine particles with a parallel orientation and a density of around 360 kg/m3.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献