A Hybrid Model for Vehicle Acceleration Prediction

Author:

Luo Haoxuan1ORCID,Hu Xiao2ORCID,Huang Linyu1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

2. College of Information Science and Technology, Northeast Normal University, Changchun 130117, China

Abstract

Accurate prediction of vehicle acceleration has significant practical applications. Deep learning, as one of the methods for acceleration prediction, has shown promising applications in acceleration prediction. However, due to the influence of multiple factors on acceleration, a single data model may not be suitable for various driving scenarios. Therefore, this paper proposes a hybrid approach for vehicle acceleration prediction by combining clustering and deep learning techniques. Based on historical data of vehicle speed, acceleration, and distance to the preceding vehicle, the proposed method first clusters the acceleration patterns of vehicles. Subsequently, different prediction models and parameters are applied to each cluster, aiming to improve the prediction accuracy. By considering the unique characteristics of each cluster, the proposed method can effectively capture the diverse acceleration patterns. Experimental results demonstrate the superiority of the proposed approach in terms of prediction accuracy compared to benchmarks. This paper contributes to the advancement of sensor data processing and artificial intelligence techniques in the field of vehicle acceleration prediction. The proposed hybrid method has the potential to enhance the accuracy and reliability of acceleration prediction, enabling applications in various domains, such as autonomous driving, traffic management, and vehicle control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3