Dissolved Oxygen Inversion Based on Himawari-8 Imagery and Machine Learning: A Case Study of Lake Chaohu

Author:

Shi Kaifang1,Wang Peng2,Yin Hang2,Lang Qi3,Wang Haozhi2,Chen Guoxin1

Affiliation:

1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

2. College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian 271018, China

3. Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

Dissolved oxygen (DO) concentration is a widely used and effective indicator for assessing water quality and pollution in aquatic environments. Continuous and large-scale inversion of water environments using remote sensing imagery has become a hot topic in water environmental research. Remote sensing technology has been extensively applied in water quality monitoring, but its limited sampling frequency necessitates the development of a high-frequency dynamic water quality monitoring model. In this study, we utilized Lake Chaohu as a case study. Firstly, we constructed a dynamic water quality inversion model for monitoring DO concentrations using machine learning methods, with Himawari-8 (H8) satellite imagery as input data and DO concentrations in Lake Chaohu as output data. Secondly, the developed DO concentration inversion model was employed to estimate the overall grid-based DO concentration in the Lake Chaohu region for the years 2019 to 2021. Lastly, Pearson correlation analysis and significance tests were performed to examine the correlation and significance between the estimated grid-based DO concentration and the ERA5 reanalysis dataset. The results demonstrate that the Random Forest (RF) model performs best in DO concentration inversion, with a high R2 score of 0.84, and low RMSE and MAE values of 0.69 and 0.54, respectively. Compared to other models, the RF model improves average performance with a 38% increase in R2, 13% decrease in RMSE, and 33% decrease in MAE. The model accurately predicts DO concentrations. Furthermore, the inversion results reveal seasonal differences in DO concentrations in Lake Chaohu from 2019 to 2021, with higher concentrations in spring and winter, and lower concentrations in summer and autumn. The average DO concentrations in the northwest, central-south, and northeast regions of Lake Chaohu are 10.12 mg/L, 9.98 mg/L, and 9.96 mg/L, respectively, with higher concentrations in the northwest region. Pearson correlation analysis indicates a significant correlation (p < 0.01) between DO concentrations and temperature, surface pressure, latent heat flux from the atmosphere to the surface, and latent heat flux from the surface to the atmosphere, with correlation coefficients of −0.615, 0.583, −0.480, and 0.444, respectively. The results verify the feasibility of using synchronous satellites for real-time inversion of DO concentrations, providing a more efficient, economical, and accurate means for real-time monitoring of DO concentrations. This study has practical value in improving the efficiency and accuracy of water environmental monitoring.

Funder

State key laboratory of plateau ecology and agriculture, Qinghai university

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

1. Water quality detection system based on multi-wavelength spectral snsors;Xu;Foreign Electron. Meas. Technol.,2022

2. Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters;Wang;Environ. Sci.,2022

3. Correlation Analysis of Water Quality between Lake Inflow and Outflow: A Case Study of Poyang Lake;Huang;Environ. Sci.,2019

4. Remote estimation of chlorophyll-a concentration in turbid water using a spectral index: A case study in Taihu Lake, China;Cheng;Environ. Monit. Assess.,2019

5. Remote sensing retrieval of inland river water quality based on BP neural network;Zhang;J. Cent. China Norm. Univ. (Nat. Sci.),2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3