Abstract
The performance of a six-axis force/torque sensor (F/T sensor) severely decreased when working in an extreme environment due to its sensitivity to ambient temperature. This paper puts forward an ensemble temperature compensation method based on the whale optimization algorithm (WOA) tuning the least-square support vector machine (LSSVM) and trimmed bagging. To be specific, the stimulated annealing algorithm (SA) was hybridized to the WOA to solve the local entrapment problem, and an adaptive trimming strategy is proposed to obtain the optimal trim portion for the trimmed bagging. In addition, inverse quote error (invQE) and cross-validation are employed to estimate the fitness better in training process. The maximum absolute measurement error caused by temperature decreased from 3.34% to 3.9×10−3% of full scale after being compensated by the proposed method. The analyses of experiments illustrate the ensemble hWOA-LSSVM based on improved trimmed bagging improves the precision and stability of F/T sensors and possesses the strengths of local search ability and better adaptability.
Funder
Key Research and Development Project of Anhui Province
Major science and technology project of Anhui Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献