Author:
Chen Xinyang,Huang Peijian,Wang Ning,Zhu Yong,Zhang Jie
Abstract
In order to resolve spectral alias due to under sampling in traditional stationary-wave integrated Fourier transform (SWIFT) spectrometers, an all-on-chip waveguide based on dual tunable Mach-Zehnder interferometer (MZI) stationary-wave integrated Fourier transform technology (DTM-SWIFT) is proposed. Several gold nanowires are asymmetrically positioned at two sides of zero optical path difference and scatter the interference fringes information, which can avoid aliasing of spectral signals and help to gain high spectral resolution. A systematic theoretical analysis is carried on in detail, including the optical distribution characteristics based on multi-beam interference, stationary-wave theorem and signal reconstruction method based on the FT technology. The results show that the method can complete a resolution of 6 nm for Gauss spectrum reconstruction using only 6 gold nanowires, and a resolution of 5 cm−1 for Raman spectrum reconstruction using 25 gold nanowires.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献