Improving Vehicle Heading Angle Accuracy Based on Dual-Antenna GNSS/INS/Barometer Integration Using Adaptive Kalman Filter

Author:

Jiao Hongyuan1ORCID,Xu Xiangbo1ORCID,Chen Shao1ORCID,Guo Ningyan2,Yu Zhibin3ORCID

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

High-accuracy heading angle is significant for estimating autonomous vehicle attitude. By integrating GNSS (Global Navigation Satellite System) dual antennas, INS (Inertial Navigation System), and a barometer, a GNSS/INS/Barometer fusion method is proposed to improve vehicle heading angle accuracy. An adaptive Kalman filter (AKF) is designed to fuse the INS error and the GNSS measurement. A random sample consensus (RANSAC) method is proposed to improve the initial heading angle accuracy applied to the INS update. The GNSS heading angle obtained by a dual-antenna orientation algorithm is additionally augmented to the measurement variable. Furthermore, the kinematic constraint of zero velocity in the lateral and vertical directions of vehicle movement is used to enhance the accuracy of the measurement model. The heading errors in the open and occluded environment are 0.5418° (RMS) and 0.636° (RMS), which represent reductions of 37.62% and 47.37% compared to the extended Kalman filter (EKF) method, respectively. The experimental results demonstrate that the proposed method effectively improves the vehicle heading angle accuracy.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3