Decentralized IoT Data Authentication with Signature Aggregation

Author:

Bojič Burgos Jay1,Pustišek Matevž1ORCID

Affiliation:

1. Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

The rapid expansion of the Internet of Things (IoT) has introduced significant challenges in data authentication, necessitating a balance between scalability and security. Traditional approaches often rely on third parties, while blockchain-based solutions face computational and storage bottlenecks. Our novel framework employs edge aggregating servers and Ethereum Layer 2 rollups, offering a scalable and secure IoT data authentication solution that reduces the need for continuous, direct interaction between IoT devices and the blockchain. We utilize and compare the Nova and Risc0 proving systems for authenticating batches of IoT data by verifying signatures, ensuring data integrity and privacy. Notably, the Nova prover significantly outperforms Risc0 in proving and verification times; for instance, with 10 signatures, Nova takes 3.62 s compared to Risc0’s 369 s, with this performance gap widening as the number of signatures in a batch increases. Our framework further enhances data verifiability and trust by recording essential information on L2 rollups, creating an immutable and transparent record of authentication. The use of Layer 2 rollups atop a permissionless blockchain like Ethereum effectively reduces on-chain storage costs by approximately 48 to 57 times compared to direct Ethereum use, addressing cost bottlenecks efficiently.

Funder

Slovenian Research and Innovation Agency

University of Ljubljana

Republic of Slovenia, the Ministry of Education, Science and Sport

European Union—NextGenerationEU

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A blueprint for energy systems in the era of central bank digital currencies;Technological Forecasting and Social Change;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3