Abstract
Fish production has become a roadblock to the development of fish farming, and one of the issues encountered throughout the hatching process is the counting procedure. Previous research has mainly depended on the use of non-machine learning-based and machine learning-based counting methods and so was unable to provide precise results. In this work, we used a robotic eye camera to capture shrimp photos on a shrimp farm to train the model. The image data were classified into three categories based on the density of shrimps: low density, medium density, and high density. We used the parameter calibration strategy to discover the appropriate parameters and provided an improved Mask Regional Convolutional Neural Network (Mask R-CNN) model. As a result, the enhanced Mask R-CNN model can reach an accuracy rate of up to 97.48%.
Funder
National University of Malaysia
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献